Romanzo scientifico

Matematica e scienza: un romanzo

Creato da EdMax il 13/03/2011

Area personale

 

Tag

 

Archivio messaggi

 
 << Novembre 2024 >> 
 
LuMaMeGiVeSaDo
 
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  
 
 

Cerca in questo Blog

  Trova
 

FACEBOOK

 
 

I miei Blog Amici

 
Citazioni nei Blog Amici: 1
 

Ultime visite al Blog

silvianeriniMargherita281028EdMaxmimmominunnieastvillagecaterina.stillitanodiletta.castellifenormone0cloud.9remulettochicauto_2015amorino11IrrequietaDDJ_Ponhzi
 
RSS (Really simple syndication) Feed Atom
 
 

 

« Personaggi della matematicaPersonaggi della matematica »

"Medie"!

Post n°103 pubblicato il 15 Maggio 2011 da EdMax
 

Denis Guedj, Il teorema del pappagallo (Le théorème du perroquet, trad. di Lidia Perria), TEA 2003

Media aritmetica, media geometrica, media armonica

«Prima di Ipparco esistevano due medie, quella aritmetica e quella geometrica. Dopo di lui, invece, ve ne furono tre, e la nuova media si chiamava armonica (pag. 115).

La media aritmetica di due numeri a e c è nota col nome di media tout court ed equivale alla metà della loro somma; essa coinvolge due operazioni, addizione e sottrazione. La sua natura è rispecchiata con chiarezza dalla seguente espressione: “La differenza tra il primo numero e il secondo è uguale a quella tra il secondo e il terzo”. Ruche scrisse la formula, incorniciandola»:

b è la media aritmetica di a e c se ab = bc, cioè b = (a + c) / 2

La media geometrica tra due numeri a e c richiede moltiplicazione e divisione. La sua natura è racchiusa in questa espressione: “Il primo sta al secondo come il secondo sta a terzo”. Per i greci, rappresenta la figura dell’analogia»: b è la media geometrica di a e c se a / b = b / c, cioè b2 = ac.

 

«E infine la media armonica, che è anche la più complessa da definire: “La differenza tra il primo e il secondo numero è pari a una frazione del primo, mentre la differenza tra il secondo e il terzo equivale alla stessa frazione, stavolta del terzo numero».

 

«Per fortuna il testo proponeva un esempio con i numeri 6, 4 e 3:

4 è la media armonica di 6 e 3 perché 6 supera 4 di 2, che è un terzo di 6, mentre 4 supera 3 di 1, che è un terzo di 3. In fondo era semplice!»

4 è la media armonica di 6 e 3 perché

6 – 4 = 2, dove 2 = 1/3 di 6, e 4 – 3 = 1, dove 1 = 1/3 di 3».

EdMax

 

 
Commenta il Post:
* Tuo nome
Utente Libero? Effettua il Login
* Tua e-mail
La tua mail non verrà pubblicata
Tuo sito
Es. http://www.tuosito.it
 
* Testo
 
Sono consentiti i tag html: <a href="">, <b>, <i>, <p>, <br>
Il testo del messaggio non può superare i 30000 caratteri.
Ricorda che puoi inviare i commenti ai messaggi anche via SMS.
Invia al numero 3202023203 scrivendo prima del messaggio:
#numero_messaggio#nome_moblog

*campo obbligatorio

Copia qui:
 
 
 

© Italiaonline S.p.A. 2024Direzione e coordinamento di Libero Acquisition S.á r.l.P. IVA 03970540963