Creato da tanksgodisfriday il 26/03/2006
Cose varie al PC, sul Web e nella mente. Puoi scrivermi a: tanksgodisfriday@libero.it
 

 

Walrasiani o Hicksiani?

Post n°1809 pubblicato il 19 Aprile 2014 da tanksgodisfriday
 
Foto di tanksgodisfriday

Ecco

 una domanda di estrema attualità: vi sentite walrasiani o hicksiani?
Fino a mezz'ora fa, cioè fino a prima di leggere di Eugen Slutsky, a questa domanda avrei risposto: «Sono Terrestre!», immaginando che si trattasse di popolazioni di lontane galassie.

Invece no, i due termini descrivono due differenti comportamenti di un Consumatore: il walrasiano (dal nome dell'economista Léon Walras) tende a comprare tutto quello che può, dato un budget di spesa; l'hicksiano (dal nome di un altro economista, John Hicks), invece, si prefissa un paniere di beni da comprare e spera di spendere il meno possibile.

La domanda ha quindi un'attualità inaspettata: il premier Renzi sta scommettendo su una popolazione di Walrasiani, pronti a investire gli 80 € in consumi. Se ha azzeccato la previsione, aumenteranno un po' i consumi, quindi la produzione (se sono beni prodotti qui), e di conseguenza l'occupazione (sempre che sia necessario aumentare gli addetti). Una catena di se molto debole, se l'obiettivo è aumentare l'occupazione.

Certamente 80 € in più al mese daranno un piccolo aiuto a molti bilanci, sia di Walrasiani che di Hicksiani, ma hanno anche un ottimo valore comunicativo, che non guasta in vista delle vicinissime elezioni europee. Questo è probabilmente il vero obiettivo dell'operazione, e non ci trovo nulla di male, sia chiaro.

Chi era Eugen Slutsky (Evgenij Evgen'evič Sluckij)
Wikipedia ci informa che fu un economista e statistico russo, nato nel 1880 e scomparso nel 1948.
Sull'esatta data di nascita regna un po' di confusione: 7 aprile per Wikipedia, 19 aprile per altri. Prendo per buona la seconda, augurando oggi un buon compleanno a Evgenij Evgen'evič.

Nato a Kiev, vi studiò appassionandosi di matematica, statistica e politica. Proprio quest'ultima passione gli procurò qualche problema con il regime zarista, portandolo prima a un allontanamento temporaneo, poi all'espulsione dall'università.
Migrò quindi a Monaco, per tornare a Kiev al termine degli studi, nel 1905.

Logico attendersi che sostenesse la Rivoluzione del 1919, ma poi le cose andarono diversamente da come le aveva auspicate. Se, inizialmente, la sostituzione del Capitalismo con il Socialismo aveva premesse scientifiche, a cui Slutsky e altri statistici contribuirono con entusiasmo, successivamente le cose cambiarono con Stalin, aggiungendo un requisito in più perché i suggerimenti degli studiosi fossero ben accetti: quello di essere in linea con le decisioni del Capo Supremo. Tra chi non si allineò, molti ci rimisero la carriera, qualcuno la vita.

Slutsky aveva cominciato ad occuparsi di economia insegnando all'Istituto del Commercio di Kiev, nel 1913. Fu qui che arrivò alla formulazione della sua Equazione. Successivamente, nel 1926, si spostò a Mosca. Quando le cose si complicarono per chi non era allineatissimo con il regime, preferì mantenersi lontano dai contrasti più accesi, spostandosi nel campo della Meteorologia, passando poi all'Istituto di Matematica e Meccanica.

L'equazione di Slutsky
Cosa succede quando il prezzo di un prodotto cambia? e quando cambia il reddito?
La risposta dipende da diversi fattori: il prezzo (o il reddito) aumenta o diminuisce? il prodotto attrae anche chi ha redditi più alti? che tipo di consumatore si trova di fronte al prodotto?

Slutsky scompose la dinamica di prezzi e reddito in due componenti: effetto reddito ed effetto sostituzione.
Quando il prezzo di un bene cala, è come se il reddito del consumatore aumentasse, dandogli la possibilità di acquistare beni addizionali, in base alle sue preferenze (effetto reddito).
D'altra parte se aumenta il reddito, c'è spazio per acquistare nuovi beni (effetto sostituzione).
Ma qui scatta un altro fattore: si tratta di beni normali o di beni inferiori? Esempio di bene normale: una Ferrari; bene inferiore: una 500. Se sono povero in canna sogno la Ferrari ma compro la 500; passo dalla 500 alla Ferrari solo se vinco al Superenalotto.

Torniamo agli 80 €.
Siamo di fronte a un aumento di reddito, anche se ridotto. Qualcuno, walrasiano della prima ora, ne investirà una parte in pizzeria (bene normale), invece di cenare a casa (se sia un bene inferiore dipende dal confronto tra pizzaiolo e cucina di casa). Qualcun altro, hicksiano nell'animo, li utilizzerà per far tirare un respiro ai conti di casa.
E poi tutti al voto.

Bravo Renzi, spero solo che ce ne siano altri ugualmente bravi, così ogni tanto si cambia.

Buon sabato.

[Tutti i post su compleanni.]

 
 
 

10 Aprile: nel 1857 nasce Henry E. Dudeney, nel 1911 muore Sam Loyd

Post n°1808 pubblicato il 10 Aprile 2014 da tanksgodisfriday
 
Foto di tanksgodisfriday

La

 giovane signora sistemò tre tazze da the vuote sopra la tavola e sfidò chiunque a mettervi dentro dieci zollette di zucchero in modo che ogni tazza contenesse un numero dispari di zollette.

È il problema n.ro 53 dei Canterbury Puzzles di Henry E. Dudeney. Per affrontare questo enigma logico-matematico, come gli altri 109 contenuti nel libro, occorre far leva sul pensiero laterale.
Una soluzione normale è esclusa infatti con un semplice ragionamento: la somma di 3 numeri dispari è necessariamente un numero dispari (dispari + dispari = pari, pari + dispari = dispari). E allora?
Serve un trucco, un'interpretazione libera del problema (e che lasci intatte le zollette!)

Henry E. Dudeney fu uno delle due figure dominanti del campo degli enigmi matematici a cavallo di fine 800, il periodo d'oro per questo genere di divagazione: diffuso sui principali giornali, vantava, diversamente da oggi un discreto numero di fan.
Trovo invece che i giochi che oggi ci sfidano dalle pagine di alleggerimento dei quotidiani (il Sudoku, per citarne uno) non stimolino più il nostro lato creativo, ma abbiano una base meccanica, ripetitiva. La mente si divaga smontando un problema, non costruendo una soluzione, attività ben più impegnativa.

Accanto a Henry Ernest Dudeney, inglese, nato il 10 Aprile 1857 e scomparso il 24 Aprile 1930, l'altra figura dominante è quella dell'americano Samuel Loyd (31 gennaio 1841 – 10 aprile 1911). Il 10 aprile è quindi l'occasione per ricordarli entrambi.
Più creativo l'americano, geniale creatore di problemi scacchistici, inventore del gioco del 15. Più matematico l'inglese, che pure cominciò anche lui pubblicando problemi di scacchi sul giornale cittadino, all'età di soli 9 anni.

Esempio di problema alla Dudeney: trovare un numero, cubo perfetto, la somma delle cui cifre sia uguale alla sua radice cubica.
Oltre al banale: 1 = 1 x 1 x 1, c'è 512 = 8 x 8 x 8, e 8 = 5 + 1 + 2.
Le soluzioni, note come numeri di Dudeney, sono in tutto 6.

A Dudeney, professore di matematica per tradizione familiare, si deve anche l'invenzione della "Verbal Arithmetic", più conosciuta come cripto-aritmetica: SEND + MORE = MONEY, a ogni lettera corrisponde una cifra tra 0 e 9, a lettere diverse corrispondono cifre diverse.

a proposito di Sam Loyd, invece, c'è un divertente aneddoto che riguarda il gioco del 15.
L'inventore del gioco fu un postino di Canastota (New York), Noyes Palmer Chapman, nel 1874. Nello spazio di pochi anni il gioco si diffuse, diventando una mania a partire dal 1880. Dagli Stati Uniti passò al Canada, poi all'Europa, per approdare in Giappone nel 1889.
Loyds si auto-proclamò inventore del gioco, anche se in realtà contribuì solo alla sua diffusione, con un'azione di marketing virale ante litteram: promise un premio di 1.000 $ per chi, partendo dalla disposizone inziale ordinata dall'1 al 15, fosse riuscito a invertire il 14 e il 15.
Non si può ed è dimostrabile matematicamente, ma la promessa del ricco premio e l'apparente semplicità dell'obiettivo spinsero molti a provarci, acquistando il gioco. Geniale.

Buon giovedì.

[Tutti i post su compleanni.]

 
 
 

1 aprile 1776: nasce Marie-Sophie Germain

Post n°1807 pubblicato il 01 Aprile 2014 da tanksgodisfriday
 
Foto di tanksgodisfriday

Le
 notti sono gelide, negli inverni parigini di quello scorcio di fine 1700. Persino l'inchiostro congela nei calamai.
Mentre fuori imperversa la Rivoluzione, nella sua camera la tredicenne Marie-Sophie, avvolta in una coperta e alla luce di una flebile candela, legge i libri presi di nascosto dalla biblioteca del padre, ricco commerciante di seta.

La passione per la matematica l'ha colta quando ha letto dell'uccisione del Grande Siracusano, Archimede: assorto nello studio di una figura geometrica tracciata sulla sabbia, mentre gli invasori romani dilagavano nella città appena caduta, non aveva dato ascolto al legionario che gli intimava di seguirlo. E questi lo aveva trafitto con la spada.
Se sono argomenti per cui vale la pena di morire, ha pensato Marie-Sophie, allora devono essere appassionanti.

Per un po' i genitori cercano di scoraggiarla, ad esempio nascondendo le candele. Non è roba per signorine, ragionano, tutto questo studiare non le farà sicuramente del bene.

La matematica per signorine
Non è che le materie scientifiche siano precluse al gentil sesso nella Francia a cavallo tra 700 e 800, questo no. È solo che vanno somministrate (si dice così) nella forma più adatta.
Ecco, ad esempio, come viene presentato in un libro di fisica al femminile di quel tempo, la legge di gravitazione di Newton. Nel dialogo, un lui ha appena spiegato Newton a una Marchesa, e questa trova un'analogia nel suo mondo:

"Je ne puis m’empêcher de penser que cette proportion des carrés des distances entre les lieux… soit observée même en amour. Ainsi, après huit jours d’absence, l’amour deviendrait 64 fois moins fort qu’il ne l’était le premier jour."

Che il detto "lontano dagli occhi lontano dal cuore" possa obbedire alla legge di Newton potrebbe anche starci, per carità. Ma apprendere con questo metodo è come remare contro corrente, non c'è dubbio.

E allora, meglio farsi passare per uomo
Marie-Sophie supera abbastanza agevolmente le resistenze paterne, ma rimangono quelle esterne.
All'École Polytechnique, che ha aperto a Parigi nel 1794, ad esempio, la diciottenne Marie-Sophie non può mettere piede, nemmeno per assistere alle lezioni. Certo, fosse un maschio, sarebbe un altro paio di maniche.
Non si sa bene come, Marie-Sophie viene a sapere di un certo Antoine Auguste Le Blanc, che ha mollato Parigi e l'École per manifesta inferiorità, poco dopo l'iscrizione.
È perfetto: Sophie si impossessa dell'identità del signor Le Blanc, impossibilitato a frequentare, ma che si fa recapitare a casa copia delle lezioni, dei problemi, e che, sempre tramite messo, consegna le soluzioni.

Il direttore dell'École, Joseph Louis Lagrange (torinese di nascita), è stupito dei progressi del signor Le Blanc e vuole congratularsi personalmente con lui. Marie-Sophie è costretta a confessare, temendo il peggio.
Invece esce dal colloquio con un nuovo supporter e nuovi stimoli per i suoi studi.

Il Grande Teorema di Fermat
Uno degli stimoli riguarda il famoso Grande (o Ultimo) Teorema di Fermat: an + bn = cn ha soluzioni intere solo per n=2.
Pierre de Fermat l'ha annotato a margine della sua copia dell'Arithmetica di Diofanto, aggiungendo di aver trovato anche una dimostrazione molto semplice ed elegante, che però marginis exiguitas non caperet, non ci sta nell'esiguità del margine della pagina. Questo avveniva nel 1637, poi Fermat non era più tornato sull'argomento.

Serviranno schiere di eccelenti matematici e 357 anni, per arrivare al 1994 e alla soluzione di Andrew Wiles, mirabile senza dubbio, ma che beato chi ci capisce anche solo un passaggio.

Gli attacchi iniziali al teorema non fanno percorrere molta strada. Il primo risultato arriva presto: basta dimostrare il teorema per n primo.
Ok, la complicazione si sfronda un po', ma di casi da dimostrare ne rimangono un'infinità.
Poi, più o meno un secolo dopo, Eulero dimostra il teorema per n=3. Ci prova per n=5, ma deve arrendersi. Ci riuscirà nel 1830 Adrien-Marie Legendre, altro matematico francese.

Marie-Sophie ha invece un'intuizione che le consente di aprire la partita per un'intero gruppo di numeri primi: quelli il cui doppio più uno è a sua volta primo. Esempio 5 (2*5+1 = 11), 11 (2*11+1 = 23). Ma non 7 (2*7+1 = 15).
Il risultato a cui arriva è che una soluzione all'equazione di Fermat è possibile solo se n divide a, b oppure c. Più tardi il suo lavoro servirà a dimostrare il teorema per tutti i primi detti, che passano alla storia come numeri di Germain.

Gauss e il signor Le Blanc
Come verificare se la sua strada per la soluzione è valida? Basta chiederlo al più grande matematico dell'epoca, Carl Friedrich Gauss, che vive in Prussia.
Marie-Sophie riveste nuovamente i panni del signor Le Blanc e nel 1804 comincia una corrispondenza con Gauss. Il teorema di Fermat non è un tema che appassioni Gauss, è troppo isolato. Ma il signor Le Blanc sembra in gamba, Gauss lo incoraggia.

Intanto Napoleone ha cominciato ad allargarsi fuori dai confini Francesi. Nel 1806 invade la Prussia.
Temendo che a Gauss capiti quello che è accaduto ad Archimede, Sophie ne raccomanda la vita al generale Joseph Marie Pernety, amico del padre. Il generale conosce la fama di Gauss e decide di rassicurarlo personalmente: «Stia tranquillo, la sua sicurezza sta a cuore a Mademoiselle Sophie Germain».
Gauss ringrazia, ma è confuso, non ha idea di chi sia la Mademoiselle in questione. E lo scrive a Le Blanc.
Per la seconda volta, Sophie è costretta a rivelarsi. L'ammirazione di Gauss si moltiplica: una donna deve superare così tanti preconcetti e avversità per raggiungere gli stessi risultati di un uomo, che deve avere capacità e determinazione non comuni. E Sophie batte moltissimi uomini in circolazione.

Ma non è facile comunque
La corrispondenza con Gauss si interrompe nel 1809. Sophie cambia terreno di indagine, dedicandosi alla fisica.
L'Accademia delle Scienze francese ha pubblicato un bando per chi ponga le basi matematiche per spiegare la fisica delle vibrazioni elastiche.
Sophie si appassiona al tema e arriva a formulare le basi della teoria. Il suo lavoro è l'unico presentato, gli altri matematici e fisici si sono arresi davanti alla complessità del problema: nuovo, si parte da zero, bisogna saperne di fisica e avere padronanza degli strumenti matematici. Nessuno ha la preparazione e la determinazione di Marie-Sophie.
Il suo lavoro viene giudicato però lacunoso e il bando viene riproposto.

Marie-Sophie si ripresenta, con un elaborato più completo. Anche questa volta è l'unica concorrente e anche questa volta la giuria conclude che non ci siamo, manca ancora qualcosa, ma non specifica cosa.
Terzo bando, terzo lavoro di Marie-Sophie e questa volta la giuria è costretta a riconoscerla vincitrice.

Non ritira il premio, questa volta è lei a bocciare la giuria. Pubblicherà il suo lavoro a proprie spese.
Ma per una donna è proprio dura: i suoi risultati saranno noti per molti anni come equazione differenziale di Lagrange, solo successivamente si chiamerà di Lagrange-Germain. Senza rispettare nemmeno l'ordine alfabetico.

Marie-Sophie se andrà nel 1831, per un tumore al seno dopo due anni di malattia. Non riuscirà a ritirare la laurea honoris causa, che l'università di Göttingen le ha conferito nel 1830, per la sua vita per la scienza.

Nel 1889 viene viene eretta la Tour Eiffel, a celebrare l'Esposizione Universale tenuta quell'anno a Parigi. Alla sua base quattro placche riportano i nomi di 72 personalità francesi della scienza: c'è Legendre, c'è Lagrange. Non c'è Marie-Sophie, che pure con il suo teorema sull'elasticità ha contribuito indirettamente, ma sostanzialmente, alla costruzione della torre.

Buon martedì.

[Tutti i post su compleanni.]

 
 
 

26 marzo 1913: nasce Paul Erdős, matematica e caffè

Post n°1806 pubblicato il 26 Marzo 2014 da tanksgodisfriday
 
Foto di tanksgodisfriday

Un matematico è una macchina che converte caffè in teoremi.

Ne
 bevve molto di caffè il matematico ungherese Paul Erdős, in pratica si cibava quasi esclusivamente di caffè e stimolanti. E, tenendo fede al suo motto, produsse una quantità record di lavori matematici, 1475 pubblicazioni per l'esattezza, collaborando con 485 altri matematici. Più prolifico di lui fu solo Eulero.

L'infanzia
A tre anni il piccolo Paul era già in grado di moltiplicare due numeri di tre cifre e appena un anno dopo scoprì da solo l'esistenza dei numeri negativi.
La sua non fu però un'infanzia felice, già segnata in partenza dalla morte per scarlattina di entrambe le sue sorelline di 3 e 5 anni, proprio mentre lui nasceva in ospedale.
L'Ungheria attraversava i terribili anni tra le due guerre mondiali, che videro il potere passare dagli Asburgo alla Repubblica democratica di Ungheria (1918), alla Republica Sovietica di Béla Kun (1918-1919), al regime fascista di Miklòs Horthy (1919-1945).
La famiglia Erdős, come tante altre famiglie ebree d'Ungheria, passò dal notevole benessere del periodo degli Asburgo (il 5% della popolazione, possedeva il 38% delle terre e forniva il 60% degli avvocati e l'80% dei finanzieri del paese), alla repressione nel periodo fascista.
Il padre di Paul, Lajos Erdős fu fatto prigioniero dai sovietici all'inizio del primo conflitto mondiale, rimanendo confinato in Siberia per sei anni.
In quegli anni si sommarono quindi la mancanza del padre, l'apprensività della madre, Anna, rimasta da sola a gestire la famiglia, il regime fascista fortemente anti-ebraico.

Le manie di Erdős: il senso della proprietà
Quando nel 1934, fresco laureato in matematica, lasciò l'Ungheria per gli Stati Uniti, Paul si portò dietro un bagaglio di manie non da poco, probabilmente frutto proprio della sua infanzia travagliata.

Cominciamo dalla proprietà privata. «Dei socialisti francesi hanno detto che la proprietà privata è un furto. Io penso che sia una seccatura».
Applicazione della regola: Erdős non si curò mai del danaro. Aveva appena riscosso il primo stipendio negli Stati Uniti, quando incrociò un mendicante che gli chiese l'elemosina. Erdős prese lo stipendio e, dopo aver tolto il poco che stimava gli sarebbe bastato per vivere quel mese, regalò il resto al mendicante.
Allo stesso modo il prestigioso premio Wolfe Prize (50.000 $) finì quasi interamente nel fondo per una borsa di studio intitolata ai suoi genitori in Isreale.
O ancora, saputo di un ragazzo molto promettente e desideroso di iscriversi a Harvard, ma a corto di mezzi, lo invitò a un colloquio nel quale si convinse che il ragazzo prometteva bene. Gli prestò allora 1.000 $ con la promessa di restituirli appena fosse stato in grado di farlo.
Dieci anni dopo, al momento della restituzione, Erdős li rifiutò, suggerendogli di «fare dei 1.000 $ la stessa cosa che ne ho fatto io».

La religione
Erdős non era un convinto credente. Ma se aveva dubbi sull'esistenza di Dio, credeva però nel Grande Libro, che conteneva la dimostrazione più elegante di qualunque proposizione matematica potesse essere concepita. «Viene dritta dal grande Libro» era il miglior complimento che potesse fare ad una dimostrazione.

Per Dio aveva un acronimo tutto suo: SF, Sommo Fascista, per l'arbitrarietà di Dio stesso sui nostri destini e sul suo in particolare: se faticava a trovare una dimostrazione, oppure se non trovava gli occhiali, era il SF che si prendeva gioco di lui.

Il linguaggio cifrato
Nel periodo giovanile in cui si era dovuto difendere dalla polizia fascista, Erdős aveva elaborato un linguaggio cifrato che utilizzò poi per tutta la vita.
Così le donne erano le cape, gli uomini schiavi, i bambini epsilon. E poi gli acronimi. Oltre a SF, elaborò per sé:
PGOM = povero grande vecchio uomo, quando raggiunse la soglia dei sessant'anni
PGOMLD = PGOM living dead (morto vivente), superati i 60
PGOMLDAD = PGOM LD archeological discovery a 65
PGOMLDADLD = PGOMLDAD legally dead a 70
PGOMLDADLDCD = PGOMLDADLD Count for dead, conta come morto, riferendosi alla prassi dell'Accademia Ungherese che non consentiva più la votazione ai membri untrasettantacinquenni

L'abbigliamento, la casa e altre cose simili
Tutto quello che possedeva stava in una valigia e in una busta di un grande magazzino ungherese.
Passò la vita facendosi ospitare da colleghi matematici, da cui riceveva brevi ospitalità, servizi di sussistenza (tipo: lavaggio biancheria) e a cui forniva in cambio la collaborazione per qualche saggio.
La difficoltà di gestirlo era comunque ben compensata dal risultato matematico ottenuto. Tutti quelli che hanno scritto qualcosa con lui hanno un Numero di Erdős pari a 1, e ne traggono vanto. Chi ha pubblicato qualcosa con un Erdős #1 ha diritto a fregiarsi di un Erdős #2, e così via.

La matematica di Erdős
Fin dalla prima infanzia, Erdős era affascinato non dall'approccio teorico, ma dalla risoluzione di problemi specifici.
Da bambino si divertiva a chiedere l'età agli amici della mamma, che subito traduceva a mente nel numero di secondi vissuti (non so se tenesse conto anche dei bisestili, ma penso proprio di sì).
Si tratta di una domanda semplice, comprensibile, anche se forse è improbabile che nasca spontanea in molte persone. Fu questa la linea guida dei lavori di Erdős, alla cui base c'era in genere una domanda il cui senso è facile da afferrare. Dare una risposta è un altro paio di maniche.

Esempio, legato alla teoria di Ramsey: quanti invitati sono necessari a una festa, perché almeno 3 di loro si conoscano tra di loro o non si conoscano?

Supponiamo che gli invitati siano 6: A, B, C, D, E, F.
Prendiamo in considerazione A: dei 5 invitati rimanenti sicuramente ce ne saranno almeno 3 che conosce (e 2 no), oppure almeno 3 che non conosce (e 2 si). Nel primo caso, se due dei tre si conoscono, allora formano insieme ad A il gruppo di 3 che stiamo cercando. Altrimenti, non conoscendosi, formano il gruppo di 3 che non si conosce.
Ragionando in modo simmetrico, si trova lo stesso risultato (3), nel caso che A non conosca almeno 3 altri inviatati.
La risposta al nostro problema è quindi 3, quando si hanno 6 invitati.

Quanti invitati servono per avere un gruppo di 4 conoscenti o non conoscenti? Erdős ha dimostrato, con il suo grandissimo amico Graham, che servono 18 invitati.
E per un gruppo di 5 amici? La risposta esatta non c'è ancora, si sa solo che ci vogliono tra 43 e 49 invitati. Per avere un gruppo di 6 amici servono tra 102 e 165, ma anche qui il numero esatto è ancora da scoprire. Su Wikipedia si può controllare lo stato attuale della ricerca.

il problema di Erdős che più mi affascina è però quello delle frazioni egizie.
Gli Egizi concepivano solo frazioni con numeratore unitario (1/4, 1/19, ...) ad eccezione di 2/3.
Dovendo calcora quanto fa un intero meno 1/4, la loro risposta non sarebbe stata 3/4, ma 1/2 + 1/4.
Erdős congetturò che una frazione con numeratore 4 (es. 4/7) può essere sempre espressa come la somma di 3 frazioni al massimo.
La congettura, non ancora risolta, è un tipico problema di Erdős: comprensibile, complicato da risolvere. Lungo la strada per la soluzione si incontrano tantissime cose interessanti.

Buon mercoledì.

[Tutti i post su compleanni.]
 
 
 

23 marzo 1882: nasce Emmy Noether, matematica e leggi della fisica

Post n°1805 pubblicato il 23 Marzo 2014 da tanksgodisfriday
 
Foto di tanksgodisfriday

Una
 delle figure più rilevanti della storia della Matematica applicata alla Fisica, Emmy Noether è nota probabilmente solo alla ristretta cerchia degli addetti ai lavori.
Eppure a lei è legato uno dei risultati più importanti del 1900, il Teorema di Noether, tra gli attrezzi di base anche della fisica odierna, quella che esplora l'antimateria e insegue il bosone di Higgs.

Il teorema di Noether

Non fatevi ingannare dal titolo del paragrafo, non state per leggere la spiegazione elementare del teorema. Posso intuirne la portata, questo sì, ma seguirne i passaggi e, quindi, essere in grado di spiegarlo, non è roba per me. Non mi aiuta nemmeno la descrizione di Wikipedia (secondo il principio di località ad ogni simmetria differenziabile dell'azione di un sistema fisico corrisponde una quantità conservata).
un analogo meccanico del teorema di Noether
Girando per la Rete ho trovato però una bella lezione (purtroppo in inglese) su Emmy Noether e sul suo teorema, con una slide illuminante, da cui ho estratto la figura qui a lato.
In sostanza il teorema di Noether consente di dedurre leggi di conservazione della Fisica, partendo dalle simmetrie del sistema fisico.
Così, dalla simmetria spaziale si deducono le prime due leggi del moto di Newton, dalla simmetria nel tempo la legge della conservazione dell'energia.

La forza del risultato della Noether non sta però solo nello spiegare leggi già acquisite per via empirica, ma nel suggerire dove cercarne altre, partendo dall'osservazione delle simmetrie del sistema fisico che si sta studiando.
È in sostanza uno strumento potentissimo, che consente di lavorare per deduzione analitica, complementando la deduzione sperimentale.

Quando si dice la parità

Emmy Noether era la prima dei quattro figli di Max Noether, professore di matematica all'università di Erlangen.
All'epoca (siamo a fine 800), in Germania non era previsto che le donne potessero accedere all'università, tanto meno insegnarvi. Così Emmy completò gli studi liceali in lingue, abilitandosi all'insegnamento del francese e dell'inglese.

Non era però la sua vocazione. Il papà le aveva instillato la curiosità per la matematica, oltre a ferrarla in materia, come nessun normale corso universitario avrebbe potuto.
Fu così che la giovanissima Emmy provò a far accettare la sua iscrizione all'università di Erlangen, inizialmente senza successo. Ottenne di poter assistere alle lezioni, questo sì, ed era già un buon risultato, visto che c'erano professori che si rifiutavano di tenere lezioni ad un uditorio che non fosse esclusivamente maschile.

Ancora qualche anno e nel 1904 finalmente si aprirono le porte dell'università anche al gentil sesso, ed Emmy fu tra le prime ad entrare.
Ne sarebbe uscita qualche anno più tardi, nel 1907, con il massimo dei voti e la lode, grazie a un lavoro di tesi tutt'altro che compilativo. Per farsi un'idea, il relatore della sua tesi, Paul Gordan, pare che si esprimesse solo mediante formule, una ventina di pagine per volta. Erano i suoi amici ad aggiungere un po' di testo tra le formule, per renderle minimamente digeribili.

Una volta laureata, Emmy rimase all'università di Erlangen, dove insegnavano il padre e il fratello. La sua retribuzione era però pari a zero, perché alle donne continuava a non era consentito insegnare.
Nei successivi anni, quelli che precipitarono l'Europa nella tragedia delle Prima Guerra Mondiale, Emmy lavorò all'ombra paterna, sostituendolo nelle lezioni di tanto in tanto, e pubblicando lavori con lui.

Nel 1915 le arriva un invito per l'università di Göttingen, il tempio della matematica. David Hilbert (il dio supremo, per rimanere nella metafora religiosa) e Felix Klein la invitano a lavorare in quella università e cercano di ottenere per lei l'eccezione, la nomina a professore.
La risposta del ministero è agghiacciante: cosa penserebbero i soldati reduci dal fronte se, tornati all'università, si ritrovassero a seguire le lezioni di una donna?

Nel 1919 cade anche questo tabù, e arriva per Emmy la meritata cattedra. La sua carriera decolla, tra studi e insegnamento.
È amatissima dai suoi allievi, i ragazzi della Noether, che arrivano anche dalla Russia per assistere alle sue lezioni.
Fila tutto liscio, fino al 1933, con la presa del potere da parte di Hitler: Emmy e i suoi sono ebrei, e questa volta la discriminazione all'insegnamento non è più di genere ma di religione. Il fratello emigra a insegnare in Siberia, lei negli Stati Uniti.

Due anni più tardi, a soli 53 anni, Emmy se ne va. Il suo amico Albert Einstein la commemora sul New York Times: «Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began».

Emmy e la non-bellezza

Non era una gran bellezza Emmy. Lo testimonia, ad esempio, la descrizione del nipote di un suo collega:
"Ricordo chiaramente una persona in visita che, sebbene una donna, mi sembrò simile a un cappellano cattolico di una parrocchia di campagna. Vestita con un indescrivibile pastrano nero che le sfiorava la caviglia, un cappello da uomo da cui spuntavano capelli corti (ancora una rarità all’epoca) e con una borsa a tracolla sistemata di traverso simile a quella dei ferrovieri all’epoca dell’impero. Era una ben strana figura. Avrà avuto circa trent’anni allora. L’avrei facilmente scambiata per un prete di qualche villaggio dei dintorni."

Se "Nessuno potrebbe sostenere che le Grazie abbiano presieduto alla sua nascita", altra testimonianza impietosa, c'è anche da dire che il suo spirito l'aveva sempre portata ad adattarsi al destino avverso: oltre a lavorare a lungo senza stipendio, dovette barcamenarsi con la piccola eredità ricevuta alla morte del padre, la legge testamentaria favoriva, infatti, i figli maschi. E quindi si era abituata a tagliare tutto il superfluo, abbigliamento incluso.

Peraltro allievi e colleghi le riconoscevano gran cuore e calore umano. Formale e irrigidita in quasi tutte le foto che la ritraggono, mi piace invece in una foto del 1931, in cui appare a suo agio, sorridente e felice. Come se non le avesse passate tutte lei: donna, ebrea, socialdemocratica e, perfino, pacifista.

Buona domenica.

[Tutti i post su compleanni.]

 
 
 
Successivi »
 

Area personale

 

Ultimi commenti

 

sito internet

 

follow us in feedly

 

 
 

Translate!

 

Ultime visite al Blog

RUSSANTONIO_2giuman958Esmaryprincesssweetadi61crociani.cristinabalestragiallalellokid66g.barbaresilorenakorenjakflorasabinamanuelazennatalia.risolaPAOLA11Opierfrancesco.car
 

I miei Blog Amici

- casalingapercaso
- Quotidianamente...
- anch'io
- Parole in cammino
- Io, a volte
- Around my heart...
- TERRA
- Sconfinando
- VuotoPieno
- A Room of One's Own
- Scherzo o Follia?
- Sguardi sul mondo
- Vivere... perché....
- antonia nella notte
- Fairground
- Abbandonare Tara
- Braveheart_bg
- MI RACCONTO
- The Beatles
- Writer
- Blue_Blog
- Vis Rationis
- Ad maiora!
- Funambola
- La parola...
- Fiumecheva
- Lighthouse
- Mise en abyme
- Canto lamore...
- Mamma & Prof.
- FAJR
- Traspablog
- GIORNALE DI CLASSE
- Ceithres Days
- Angelblues
- Matematica Insieme
- pezzi di pezzettini
- I RIMEDI DELLA NONNA
- altrochemela
- Amore vero e grande
- In Gran Segreto
- Incompleta
- parole e colori
- SILENZIOSAMENTE
- Fatti non foste ...
- luglio
- BBARE
- IL MIO TEMPO
- Dietro langolo
- ciondoli damore
- REZIA
- Zib@ldone
- fatti miei
- cachecoeur
- PETRONIUS ARBITER
- Il cielo in 1 stanza
- Un mondo di parole
- Moleskine
- one more time....
- Lunedì
- confronti indiretti
- Angolo nascosto
- ATTRAVERSOloSPECCHIO
- Scintille
- ricomincioda7
- Dialoghi musicali
- Ciarle
- frammenti...
- Condivisione
- Umiltà e Dignità
- Mi viene il vomito
- emozioni notturne
- Recondite emozioni
- Frammenti
- MaryRoses Life
- IL MIO RIFUGIO
- Raccontami
- Fantasy
- Cucina con passione
- BELLARTE
- il bagnasciuga
- A.m.u.c.h.i.n.a.7
- Empatia
- FATA VIAM INVENIENT
- ring pong
- opinioni e poesie
- Cinema e Libri
- parlodime
- seasons2012
- Pensieri vaganti
- Amore e Psiche
- Condividendo
- Il mio dolce vampiro
- SPIDER
- Il Salotto
- LEZIONI INFORMATICA
- Orme dellAnima
- Meneraccontiunaltra