An Overview of 200G QSFP-DD AOC

The Market Situation of AOC

Today’s hyperscale data centers and High-Performance Computing (HPC) markets require low-cost solutions for high-performance AOCs for the large-scale adoption of 200G and 400G data rates.

According to a recent report from LightCounting, the multi-mode AOC market will be experiencing significant growth over the next five years in the HPC and large-scale data center applications.

However, the market for 100G AOC is continually growing in the HPC and large-scale data center applications now, and it is still too early to adopt 400G AOC owing to cost and others so that the adoption of 200G AOC is expected to grow in the next years.

AOC and EOM to see revenue growth through 2023 (Source: LightCounting)

In the 200G AOC market, the 200G QSFP-DD AOC is a kind of parallel transceiver optics assembly. It will be the huge potential market and it is possible to replace copper technology in HPC and data center, the reasons include form factor, cost and so on. Next, we will explore them together.

Why Is 200G QSFP-DD AOC More Likely to Be Popular?

The 200G QSFP-DD AOC is a kind of 200G AOC that adopts the QSFP-DD form factor.

QSFP-DD is an eight-channel electrical interface with an additional row of contacts. It is being developed by the QSFP-DD MSA as a key part of the industry’s effort to enable high-speed solutions. The 200G QSFP-DD AOC meets the requirements of QSFP-DD MSA specification.

The QSFP-DD modules are similar to current QSFP. The systems designed with QSFP-DD modules can be backward compatible, allowing them to support existing QSFP modules and provide flexibility for end users and system designers. The 200G QSFP-DD AOC is convenient for end users and system designers.

The Introduction of Gigalight 200G QSFP-DD AOC

Gigalight is one of the rare providers for 200G QSFP-DD AOC. Its 200G QSFP-DD AOC is driving from its innovative optical packaging and the key manufacturing technologies enable scalability, reduced power consumption, increased reliability, and superior module performance for optical communications.

Gigalight 200G QSFP-DD AOC

Features of Gigalight 200G QSFP-DD AOC

  • 8 channels full-duplex 850nm parallel active optical cable
  • Transmission data rate up to 25.78Gbps per channel with integrated CDR
  • Hot-pluggable QSFP-DD form-factor connectors
  • Low power consumption < 4W per end
  • Operating case temperature range 0°C to +70°C

The module block diagram of Gigalight 200G QSFP-DD AOC

Gigalight 200G QSFP-DD AOC adopts self-developed COB (Chip on Board) high-precision technology. The cost of the product is lower and the volume is smaller, which can provide a new generation solution with low cost, low power consumption, high density and high speed for the data center.

Originally article: An Overview of 200G QSFP-DD AOC

Comparison of Two Parallel Technologies in 200G Optical Modules

According to data disclosed by Google, Facebook, etc., the internal traffic of these Internet giant data centers is increasing by nearly 100% every year. Currently, some Internet giants deploying 100G earlier have begun to seek higher-speed solutions, and the choice of next-generation data centers has become A topic that everyone is enthusiastic about.

The 400G Ethernet standard is preceded by the 200G Ethernet standard, which may reflect the industry’s mindset—more optimistic about 400G, or 200G is just a transition solution for 400G.

But directly from 100G to 400G is actually not very scientific.

  1. First of all, from the data center side, we need to rebuild the ultra-large-scale data center and define a new specification architecture. The requirements for rack power in the 400G era switch will be quite high, and the traditional air-cooling heat dissipation is more difficult.
  2. Furthermore, the 400G data center will use PAM4 technology, and the PAM4 technology will make the system less transparent and difficult to manage. The traditional NRZ technology together with the parallel technology can make the data center easy to manage.

In order to more flexibly adapt to the needs of the future data center and achieve a perfect transition to the 400G data center, Gigalight recently completed a low-cost data center internal parallel optical interconnection solution based on 200G NRZ transmission. This paper mainly compares 200G NRZ—Two parallel technologies in the solution, and two products as an example for simple analysis.

Fiber Parallel Solution—Is It Single- or Multi-Mode?

The traditional parallel optical module products are mainly based on optical interconnect technology of multimode fiber, and have the advantages of high bandwidth, low loss, no crosstalk and matching and electromagnetic compatibility problems. They have gradually replaced copper-based electrical interconnection products and are used in cabinets. High-speed interconnection between the boards, the connection distance is up to 300 meters under the OM3 fiber.

At the same time, in order to apply to longer-distance transmission solutions, Parallel Single-Mode (PSM) optical modules have emerged, mainly using FP lasers to transmit 2km in single-mode fiber and DFB to transmit 10km applications, which is more difficult than multi-mode interconnection technology.

Data center cabling is a very complicated problem. The choice of multimode fiber or single-mode fiber has been the subject of heated discussion in the industry. There are also choices in major data centers. For example, in the 100G era, Facebook chooses single mode, Google chooses both multimode and single mode. At the same time, BAT (Baidu, Alibaba, Tencent) chooses multimode. From the perspective of cost, multimode fiber is expensive and multimode optical module is cheap. Single mode fiber is cheap and single mode optical module is expensive. Therefore, it is easy to combine the cost of fiber and optical module to obtain the relationship between distance and cost. Taking the 100G solution as an example, the cost advantage of a multimode solution is very obvious when the fiber distance is within 100 meters.

The parallel technology route is characterized in that each pair of multimode fibers respectively carries one optical signal. At present, IEEE’s 400G SR16 standard is a 16x 25G parallel solution, which requires 16 pairs of multimode fiber. It is far more than the 12-core MPO widely used in the 100G era, which will lead to a significant increase in cost; more importantly, multimode optical modules rely on The low-cost VCSEL optical chip solution, 2020, is likely to still require more than 12-core MPO’s 8-pair multimode fiber. The 400G SR4 that the existing 12-pin MPO can accommodate seems to be in the foreseeable future.

Therefore, in 2020, if there is no open and standardized multi-mode wavelength multiplexing technology (such as SWDM technology), low-cost VCSEL 100G technology can not achieve breakthrough, 400G multi-mode fiber solution cost advantage will no longer be obvious, single-mode fiber It may become mainstream in large-scale data centers, and short- and medium-range single-mode parallel solutions will be a cost-effective alternative to multi-mode parallel solutions.

——Yang Zhihua, “Top Ten Hotspots of Data Center Network Technology in 2020”

200G PSM8 vs. 200G SR8

Based on Gigalight’s unique PSM series product line, Gigalight recently released a new product—200G QSFP-DD PSM8, a high-speed product of single-mode parallel technology.

To achieve long-distance transmission, single-mode fiber with low dispersion loss must be used. To achieve high coupling efficiency between single-mode fiber and semiconductor, it is necessary to shape the light field emitted by the semiconductor laser to maximize the incident light field and the intrinsic optical field of the fiber.

And the 200G QSFP-DD SR8 uses an 8-channel 850nm VCSEL array that complies with the 100GBASE-SR4 protocol standard. The 200G QSFP-DD SR8 is a multimode parallel product. With the traditional VCSEL advantage platform, Gigalight uses a simple, efficient and reliable fiber coupling process technology to add a 45° prism between the laser and the fiber. The special material treatment of the fiber surface increases the coupling efficiency of the fiber to over 80%.

The two products are similar in that they belong to the optical modules in the 200G data center solution, and all use the QSFP-DD package, which can use the 16-core MTP.

The advantage of QSFP-DD is that the 1U panel can achieve a density of 36x 200G/400G, and it is forward- and backward compatible with QSFP, and is compatible with existing QSFP28 optical modules and AOC/DAC.

The main difference is that the 200G QSFP-DD PSM8 adopts an 8-way 1310nm single-mode fiber parallel solution with a transmission distance of up to 10km. The 200G QSFP-DD SR8 adopts a multi-mode fiber parallel solution and can travel over the OM4 fiber link. Up to 100m.

Summary

The multi-mode parallel solution is the core of the current data center development, and the transmission distance between the switch and the core switch is just within the scope of the multi-mode fiber.

Corning has introduced OM5 fiber in the past few years, but it has not caused the expected market reaction. The SWDM short-range wavelength division multiplexing scheme is only promoted by a few manufacturers—it is indeed lacking in the market.

In the near future, if a general enterprise data center wants to continue to use standard-certified solutions and reduce the cost of optical components, you can choose multi-mode parallel optics—after all, SMBs do not need as large a capacity as 400G.

However, if it is in the construction and deployment process of a very large-scale data center, especially considering the scalability of the system and the flexibility of the system, we should probably consider the single-mode parallel solution.

In the eyes of some people of insight, the single-mode parallel solution increases the number of fiber cores, but overall reduces the maintenance complexity, is easier to manage, and is easier to upgrade from 100G to 400G later. Without increasing fiber resources, the current 100G CWDM4 based on wavelength division multiplexing can only evolve to 200G FR4, and 100G PSM4 can be upgraded to 400G DR4).

——Li Mofei, “Review of Data Center: Cost Technology is Concise and Reconfigurable”

In general, the technology roadmap for major switch and transceiver vendors shows a very clear and simple migration path for customers deploying parallel optics. So when optics are available and migrated from 100G to 200G or 400G, their fiber infrastructure still exists and no upgrades are required.

Reliability, product life and maintenance costs are all interrelated. The parallel single-mode solution represented by 200G QSFP-DD PSM8 in total cost should be the cabling guide for large-scale data centers in the future.

Originally article: Comparison of Two Parallel Technologies in 200G Optical Modules

Le tecnologie dei ricetrasmettitori ottici di prossima generazione – PAM4 e 64QAM

Tecnologie PAM4 e 64QAM

Il passaggio ai servizi cloud e alle reti virtualizzate ha messo il data center nel mezzo del nostro mondo e ha significato che la connettività all’interno dei data center e tra i data center ha un enorme impatto sulla fornitura di servizi aziendali e personali. I data center Hyperscale vengono installati in tutto il mondo e questi hanno tutti bisogno di essere connessi. Per soddisfare questa domanda, i fornitori di ricetrasmettitori ottici stanno offrendo nuove soluzioni basate su PAM4 e 64QAM, fornendo una modulazione coerente che ridurrà il costo della connettività e aumenterà la larghezza di banda di ciascuna connessione.

Le connessioni a molti server sono già 25G e i collegamenti tra switch in data center di grandi dimensioni sono già 100G. L’introduzione dei transceiver SFP28 e QSFP28 che integrano le nuove tecnologie e sono state costruite utilizzando tecniche di produzione efficienti hanno ridotto il costo di queste connessioni e consentito una crescita massiccia nel mercato. La fase successiva è l’introduzione di soluzioni a singola lambda 100G e ricetrasmettitori a basso costo 400G per i collegamenti tra switch. I dispositivi PHY necessari per questo passaggio successivo sono già disponibili, i dispositivi switch da 12,8T sono in produzione e i primi ricetrasmettitori ottici QSFP-DD e OSFP 400G sono di campionamento.

QSFP-DD

L’ascesa dell’operatore di data center hyperscale ha cambiato radicalmente il mercato. Il passaggio a 25G e 100G da 10G e 40G è avvenuto molto rapidamente. L’ampiezza e il numero di data center installati o aggiornati significa che le nuove tecnologie possono essere spedite in volume non appena il prezzo è giusto, i componenti sono stati qualificati e le linee di produzione sono operative. Ora stiamo vedendo i primi dispositivi 400G PHY e ricetrasmettitori ottici per la disponibilità di data center e le aziende stanno gareggiando per la posizione di mercato in attesa che i principali operatori hyperscale si impegnino a implementazioni di grandi dimensioni.

Molte di quelle aziende che hanno beneficiato di 25G e 100G stanno investendo i propri investimenti in soluzioni Lambda PAM4 100G e 400G per il data center . Ciò ha richiesto nuovi dispositivi PAM4 PHY progettati per soddisfare i limiti di potenza dei transceiver OSGP e QSFP-DD 400G. Alcune aziende hanno anche investito in PHG 50G e 200G PAM4, consentendo un aggiornamento economico da 25G e 100G. Si prevede che i ricetrasmettitori 50G SFP56 e 200G QSFP56 siano soluzioni provvisorie, ma non è chiaro quanto sia diffuso il loro uso o per quanto tempo. 40G è stata una soluzione provvisoria che è durata per molti anni.

La tecnologia coerente, originariamente sviluppata per reti a lungo raggio da 100G, è ora ampiamente utilizzata per le connessioni a lungo raggio, comprese le reti sottomarine, metropolitane e Data Center Interconnect (DCI) tra i data center. Il mercato per DCI è cresciuto rapidamente, con molti fornitori di sistemi che offrono soluzioni con una copertura da 80 a 500 km. Per le applicazioni a lungo raggio e metropolitane, numerosi produttori leader di apparecchiature continuano a utilizzare progetti di DSP (Digital Signal Processor) coerenti all’interno dell’azienda. La soluzione coerente DSP è ora disponibile per i fornitori di ricetrasmettitori ottici come Gigalight che invierà transceiver 400Gbasato su questo disegno. Gli ultimi ASIC DSP stanno abilitando le soluzioni 600G (64Gbaud 64QAM) e i transceiver CFP2-DCO. Il passo successivo è l’introduzione dei DSP 7nm che consentiranno l’utilizzo di transceiver ZR 400G a costi contenuti per collegamenti 400G fino a 100 km a partire dal 2020.

Questo continua ad essere un mercato in divenire. Lumentum ha completato l’acquisizione di Oclaro, Cisco ha completato l’acquisizione di Luxtera e diversi fornitori di ricetrasmettitori ottici cinesi hanno aderito alla carica di 400G nel data center. I dispositivi PAM4 PHY richiesti per 100G single lambda e 400G nel data center si stanno dimostrando molto impegnativi da consegnare. Le soluzioni PAM4 PHY in tecnologia a 28 nm e 14/16 nm sono state sottoposte a campionamento per oltre sei mesi e ora vengono affiancate da soluzioni 7nm.

Articoli correlati: PAM4 — The High-Speed Signal Interconnection Technology of Next-Generation Data Center

PAM4 — The High-Speed Signal Interconnection Technology of Next-Generation Data Center

What Is PAM4?

PAM4 (4-Level Pulse Amplitude Modulation) is one of PAM modulation technologies that uses 4 different signal levels for signal transmission. Each symbol period can represent 2 bits of logic information (0, 1, 2, 3), that is, four levels per unit time.

In the data center and short-distance optical fiber transmission, the modulation scheme of NRZ is still adopted, that is, the high and low signal levels are used to represent the (1, 0) information of the digital logic signal to be transmitted, and one bit of logical information can be transmitted per signal symbol period.

However, as the transmission rate evolves from 28Gb/s to a higher rate, the electrical signal transmission on the backplane will cause more severe loss to the high-frequency signal, and higher-order modulation can transmit more data in the same signal bandwidth. Therefore, the industry is increasingly calling for higher-order PAM4 modulation. The PAM4 signal uses four different signal levels for signal transmission, and each symbol period can represent 2 bits of logical information (0, 1, 2, 3). Since the PAM4 signal can transmit 2 bits of information per symbol period, to achieve the same signal transmission capability, the symbol rate of the PAM4 signal only needs to reach half of the NRZ signal, so the loss caused by the transmission channel is greatly reduced. With the development of future technologies, the possibility of using more levels of PAM8 or even PAM16 signals for information transmission is not ruled out.

NRZ vs. PAM4: The comparison of waveforms and eye diagrams between NRZ and PAM4 signals

And then, if the optical signal can also be transmitted by using the PAM4, the clock recovery and pre-emphasized PAM4 signal can be directly realized when the electro-optical transmitting is performed inside the optical module, therefore, the unnecessary step of converting the PAM4 signal into the NRZ signal of 2 times the baud rate and then performing related processing is eliminated, thereby saving the chip design cost.

Why PAM4?

The end-to-end transmission system includes fiber optic and fiber-optic transmission systems. Since the fiber transmission can easily reach the rate of 25Gbd so that the research progress of transmitting PAM4 on the fiber has been progressing slowly. For fiber-optic transmission systems, from NRZ moving to PAM4 is considered in terms of cost. If you do not need to consider the cost, there are other related modulation technologies can be used in the long-distance range, such as DP-QPSK, which can transmit the baud rate signal above 50Gbd for several thousand kilometers. However, in the data center field, the transmission distance is generally only 10km or less. If the optical transceiver using PAM4 technology is adopted, the cost can be greatly reduced.

For 400GE, the largest cost is expected to be optical components and related RF packages. PAM4 technology uses four different signal levels for signal transmission. It can transmit 2 bits of logic information per clock cycle and double the transmission bandwidth, thus effectively reducing transmission costs. For example, 50GE is based on a single 25G optical device, and the bandwidth is doubled through the electrical layer PAM4 technology, which effectively solves the problem of high cost while satisfying the bandwidth improvement. The 200GE/400GE adopts 4/8 channel 25G devices, and the bandwidth can be doubled by PAM4 technology.

For data center applications, reducing the application of the device can significantly reduce costs. The initial goal of adopting higher order modulation formats is to place more complex parts on the circuit side to reduce the optical performance requirements. The use of high-order modulation formats is an effective way to reduce the number of optics used, reduce the performance requirements of optics, and achieve a balance between performance, cost, power, and density in different applications.

In some application scenarios, high-order modulation formats have been used for several years on the line side. However, since the client side needs are different from the line side, so other considerations are needed.

For example, on the client side, the main consideration is the test cost, power consumption and density. On the line side, spectrum efficiency and performance are mainly considered, and cost reduction is not the most important consideration. By using linear components on the client side and the PAM4 modulation format that is directly detected, companies can greatly reduce test complexity and thus reduce costs. Among all high-order modulation formats, the lowest cost implementation is PAM4 modulation with a spectral efficiency of 2 bits/s/Hz.

PAM4

Conclusion

As a popular signal transmission technology for high-speed signal interconnection in next-generation data centers, PAM4 signals are widely used for electrical and optical signal transmission on 200G/400G interfaces. Gigalight has a first-class R&D team in the industry and has overcome the signal integrity design challenges of PAM4 modulation. Gigalight’s 200G/400G PAM4 products include 200G QSFP56 SR4, 200G QSFP56 AOC, 200G QSFP56 FR4, 400G QSFP56-DD SR8, 400G QSFP56-DD AOC, etc.

All of the PAM4 products from Gigalight can be divided into digital PAM4 products and analog PAM4 products. The digital PAM4 products adopt DSP solutions which can support a variety of complex and efficient modulation schemes. The electric port has strong adaptability and good photoelectric performance. And the analog PAM4 products simulate CDR with low power consumption and low cost. Gigalight always adheres to the concept of innovation, innovative technology, and overcomes difficulties. It invests a lot of human resources and material resources in the research and development of next-generation data center products.

Originally published at dci.ti-da.net