GLI ESERCIZIARI DI WALTER CAPUTO
I CORSI DI WALTER CAPUTO
CORSO DI ANALISI E CONTROLLO DEI COSTI ADDSKILLS
CORSO PAGHE E CONTRIBUTI ADDSKILLS
CORSO DI CONTABILITA' ADDSKILLS
CORSI DI EXCEL di livello base, intermedio, avanzato ed anche personalizzati
E-BOOK DI WALTER CAPUTO
FONDAMENTI DI CONTABILITA' E IVA - 1° EDIZIONE 2023 - per ora in edizione digitale
IRPEF E MODELLO REDDITI PERSONE FISICHE 2023 - 1° EDIZIONE 2023 - solo in edizione digitale
CORSO BASE DI PAGHE E CONTRIBUTI - 7° EDIZIONE MARZO 2022 anche in edizione CARTACEA
CORSO DI ANALISI E CONTROLLO DEI COSTI 2020 anche in edizione CARTACEA
I LIBRI DI WALTER CAPUTO
NON E' COLPA DELLA STATISTICA - 1° edizione 2023 - in versione cartacea
LA PIZZA AL MICROSCOPIO (con Luigina Pugno) - 1° edizione 2016 (rassegna stampa)
L'ANALISI PER FLUSSI E IL RENDICONTO FINANZIARIO - 2° edizione 2011
CASI SVOLTI DI CONTABILITA' E BILANCIO - 1° edizione 2007
CORSO BASE CONTROLLO DI GESTIONE - 2° edizione 2009
PAGHE E CONTRIBUTI - 6° edizione 2011
CASI SVOLTI DI PAGHE E CONTRIBUTI - 3° edizione 2008
CORSO BASE DI CONTABILITA' E BILANCIO - 6° edizione 2011
T.F.R. 2007 - COSA CAMBIA E COSA FARE - 1° edizione 2007
VACCINI, VIRUS E PARASSITI
Qualcosa di interessante: virus, microbi e vaccini
Virus, microbi e vaccini: i tempi duri della peste
Vaccini: una sfida per la mente
Parassiti, arance, Azzorre 1864, Stati Uniti oggi
Vivere a spese degli altri: la dura vita del parassita
Estendere l'immunità naturale con i vaccini
Come il cervello coopera con il sistema immunitario e le cellule staminali
Virus: per loro siamo una fantastica opportunità
VIAGGI E SCIENZA
Come si otteneva un tempo carbone da legna
Viaggi e scienza: uno sguardo al nostro glorioso passato
Esploratori perduti. Gravità Zero intervista il Dott. Stefano Mazzotti
Microrganismi estremi in fonti termali sottomarine
Specie endemica in via di estinzione: il Priolo
Orme di dinosauri: il passato ritorna dalle profondità della Terra
NON E' COLPA DELLA STATISTICA
Come acquistare il libro "Non è colpa della statistica"
La recensione di Gaetano Lisco
La recensione di Paride Iuso
La recensione di Antonella Amato
Indagine sui limiti della calcolabilità: intervista al Prof. Alfredo Garro
Un approccio non matematico alla statistica per le scienze mediche
Video su Tik Tok a cura di "Libriperdavvero" in cui viene presentato il libro "Non è colpa della statistica" e letta l'introduzione
« MATEMATICA, INFINITO E P... | PERCHE’ SI AMA O SI ODIA... » |
L’ILLUSIONE DELLA CONTINUITA’ – di Walter Caputo – 25 maggio 2010
Post n°403 pubblicato il 25 Maggio 2010 da supergigia2000
Quando si insegna matematica o statistica, prima o poi si giunge a dover necessariamente definire il concetto di continuità. Perché esso sia facilmente assimilabile dagli studenti, in genere si cerca una qualche metafora adatta, che possa restare impressa in mente, e che sia richiamabile dallo studente ogni volta che legge sul libro di testo che una certa funzione o un certo oggetto è continuo. Come tanti altri insegnanti di matematica, anch’io ho affermato che una funzione è continua quando, per disegnarla, “non si stacca la matita dal foglio”. Ciò in quanto, tramite il disegno, si “occupa” tutto l’insieme dei numeri reali, che è rappresentato dall’asse x del piano cartesiano, e non si lascia nessun “buco”. Se invece, per tracciare una funzione, dovessi necessariamente staccare la matita dal foglio e riprendere il disegno in un punto successivo, ciò implicherebbe che la funzione non è continua. Anche in statistica, quando si parla di variabili casuali, cioè di oggetti (in senso matematico) che possono assumere differenti esiti, e a ciascun esito è associata una probabilità, occorre specificare cosa si intende per variabili casuali continue e discrete. In genere dico che, se la variabile casuale ha come oggetto il numero di figli per famiglia, questo numero può essere 1 oppure 2 o 3, ma non certo 1,5 o 1,7, di conseguenza, la rappresentazione della variabile casuale “numero di figli per famiglia” mostrerà buchi dell’asse reale corrispondenti a tutti i numeri compresi tra 1 e 2 ed anche tra 2 e 3 e via di seguito. In maniera analoga, la variabile casuale “lancio di un dado” ha 6 differenti esiti (corrispondenti alle sei possibili facce), e ad ogni esito è associata la probabilità di 1/6: dato che non è possibile che esca la faccia 1,3, la variabile in questione è discreta. Se invece dovessimo costruire una variabile casuale i cui esiti sono i possibili chilometri all’ora percorsi da un’automobile, diremmo certamente che essa è continua, perché effettivamente la lancetta del contachilometri varia nel continuo, potendo essere la velocità, ad esempio, anche 50,4356789 chilometri all’ora. Raccontato in questi termini, il concetto di continuità appare assoluto. Un oggetto è continuo, oppure non lo è: la continuità non dipende da nulla. Ma le cose stanno davvero così? Ho avuto recentemente modo di conoscere il Prof. Yaroslav Sergeyev ed ho iniziato a studiare il suo nuovo approccio alla matematica, basato essenzialmente sulla fisica. Ho già trattato gli aspetti generali in “La fisica dell’infinito”, il calcolo dei limiti in “A cosa serve l’infinito?” e la probabile modifica dei programmi di analisi matematica in “Matematica, infinito e programmi scolastici”. Mi sto occupando di questo nuovo approccio soprattutto perché non capita tante volte nella vita di poter studiare e cominciare a capire una matematica nuova, quando chi la sta elaborando è in vita ed è possibile interagire con lui, in modo tale da poter poi trasmettere agli studenti finalmente qualcosa di nuovo, utile e semplice. Nell’articolo “Numerical point of view on Calculus for functions assuming finite, infinite and infinitesimal values over finite, infinite and infinitesimal domains”, il Prof. Sergeyev sviluppa un nuovo concetto di continuità, a partire dall’idea di continuità tipica della Fisica. Scrive che “se osserviamo un tavolo tramite i nostri occhi, lo vediamo continuo. Se usiamo un microscopio per la nostra osservazione, vediamo il tavolo discreto”, ovvero composto di tante particelle separate fra di loro. Dunque noi decidiamo come vedere l’oggetto e, a seconda dello strumento utilizzato, l’oggetto può essere continuo o discreto. I nostri occhi sono troppo deboli per consentirci di vedere, ad esempio, le molecole. Ciò implica che in fisica la continuità è relativa, in quanto dipende, innanzitutto, dallo strumento di osservazione utilizzato. E allora perché in matematica dobbiamo considerare un concetto assoluto di continuità? Perché una funzione può essere solo discreta oppure solo continua? Come mi ha detto il Prof. Sergeyev, in un colloquio del 16 aprile a Torino, “la continuità (in senso assoluto) è un’illusione”. Ha poi aggiunto che “in seguito alla rivoluzione della Fisica Quantistica, non possiamo più considerare l’oggetto in assoluto, ma dobbiamo prendere in esame l’oggetto in rapporto allo strumento. Ciò in quanto l’osservatore modifica l’osservazione, poiché egli interagisce con lo strumento”. Il fine della nuova matematica del Prof. Sergeyev e la base su cui si fonda il suo nuovo concetto di continuità è il postulato numero 2: “Non diremo cosa sono gli oggetti matematici che trattiamo, noi costruiremo solo strumenti più potenti che ci permetteranno di migliorare le nostre capacità di osservare e descrivere le proprietà degli oggetti matematici”. Cercherò ora di descrivere, nel modo più semplice possibile, la “Sergeyev's continuity”. Prendiamo un intervallo compreso tra “a” e “b” e scegliamo il nostro strumento per osservare i punti nell'intervallo - un sistema numerale che ci permetterà di scrivere certi (ben definiti) numerali che possiamo usare per esprimere le coordinate dei punti nell'intervallo. Quindi, per noi l'intervallo consisterà solo di questi punti osservabili perché il nostro sistema numerale (il nostro microscopio) non ci permette di vedere nient'altro. Tra i punti osservabili consideriamo un punto “x”. Allora tra i punti osservabili con il nostro microscopio ci sono “x+“ il più piccolo punto, compreso nell’intervallo, superiore a x e “x-“ il punto più grande, compreso nell’intervallo, inferiore a x. Scegliendo una determinata unità di misura, possiamo affermare che l’intervallo, che definiamo insieme X, è continuo rispetto all’unità di misura scelta se, per ciascun punto appartenente all’intervallo (esclusi gli estremi) le differenze “x+ - x” e “x – x-“ corrispondono a numeri infinitesimi. Nel sistema numerico del Prof. Sergeyev, che contiene il “gross one”, cioè il più grande fra i numeri naturali, un infinitesimo non è nient’altro che 1 fratto gross one, cioè gross one elevato a meno 1. Di conseguenza se le differenze prima citate sono potenze negative di gross one, l’insieme X è continuo. Grazie a questo sistema numerico, diventa anche possibile considerare differenti ordini di continuità, valutando diverse potenze negative di gross one, poiché gross one alla meno 1 è diverso da gross one alla meno 2 e via di seguito. Questo nuovo concetto matematico di continuità è coerente con quello fisico, che varia rispetto allo strumento di osservazione usato. Nel caso matematico, lo strumento è rappresentato dal sistema numerale scelto per esprimere le coordinate dei punti e dall’unità di misura. Il Prof. Sergeyev, nell’articolo prima citato, spiega anche con esempio, come sia possibile che lo stesso insieme X sia prima continuo, in base ad una certa unità di misura, e poi diventi non continuo appena si cambia in modo opportuno l’unità di misura. In particolare, se prendiamo un intervallo costituito da 5 punti equidistanti e diciamo che, in base all’unità di misura “u” la distanza, fra ogni punto e quello successivo, è pari a gross one alla meno 1 (cioè infinitesima), possiamo affermare, in base alla precedente definizione della “Sergeyev continuity”, che l’insieme X è continuo. Ma se cambiamo unità di misura e ne scegliamo una, definita “v”, che è pari alla precedente (u) moltiplicata per gross one alla terza, allora lo stesso insieme X diventa non continuo. Infatti, la distanza fra ciascun punto e quello successivo, sarà pari a gross one alla meno 1 per gross one alla terza, cioè a gross one alla seconda (quando le basi sono uguali, in questo caso le basi sono entrambi gross one, gli esponenti si sommano: - 1 + 3 = 2), vale a dire una distanza infinita, non infinitesima. Spero di aver spiegato la “Sergeyev's continuity” in maniera abbastanza comprensibile, poiché intendo ribadire che si tratta di un concetto di continuità più semplice rispetto a quella tradizionale, più aderente agli attuali standard della Fisica e maggiormente in grado di fornire informazioni sull’oggetto di cui si valuta la continuità stessa. In ogni caso, per tutti i lettori interessati, tornerò senz’altro sull’argomento e scriverò altri articoli. La lettura in sequenza cronologica di tutti gli articoli consentirà un grado di comprensione sempre maggiore. |
MENU
CERCA IN QUESTO BLOG
CHI PUÒ SCRIVERE SUL BLOG
L'AUTORE DEL BLOG: CHI E' WALTER CAPUTO ?
Ha un diploma universitario in Amministrazione Aziendale, con specializzazione in Finanza. E’ laureato in Economia e Commercio e in Scienze Statistiche. Insegna sia materie matematico - fisico – statistiche che economico - giuridico - fiscali. Su questi temi: contabilità, controllo di gestione, paghe e contributi, divulgazione scientifica ha scritto decine di libri. Inoltre ha pubblicato più di 300 articoli di divulgazione scientifica. Da giugno 2016 è coautore del blog Cibo al microscopio. Da novembre 2012 è cofondatore di Risparmiare Fare Guadagnare. Da novembre 2008 è science writer per Gravità Zero, corporate blog di divulgazione scientifica. Da giugno 2007 è autore di un Blog di Scienze naturali ed economiche.
I suoi articoli si leggono qui.
Il suo profilo Linkedin, Facebook, Twitter .
Qualcosa di divertente sull'autore di qusto blog.
DOCENTI E STUDENTI PIU' EFFICACI ED EFFICIENTI
In viaggio con lo smartphone. Ma occorre conoscere Android
Le risorse per ottimizzare il lavoro di docenti e studenti
e-Collaboration: raggiungere obiettivi e risolvere problemi insieme agli altri
Insegnare oggi: e-reader, fonepad, web 2.0, e-Collaboration, information overload
Come sopravvivere alle informazioni sul web
Ebook veri, non semplici accessi a server remoti
Studiare è un gioco da ragazzi: come migliorare l'efficienza nello studio
FISICA: ARTICOLI DIVULGATIVI DI WALTER CAPUTO
Enrico Fermi e i secchi della sora Cesarina
Fisica e viaggi fai da te lungo i fiumi
Il movimento dei corpi, da Newton ad Einstein